
apybiomart Documentation
Release 0.5.3

Roberto Preste

Mar 07, 2022

CONTENTS:

1 Features 3
1.1 Background . 3

2 Installation 5

3 Credits 7

4 Table Of Contents 9
4.1 apybiomart . 9
4.2 Installation . 10
4.3 Usage . 11
4.4 API . 15
4.5 Contributing . 17
4.6 Credits . 20
4.7 History . 20

5 Indices and tables 23

Python Module Index 25

Index 27

i

ii

apybiomart Documentation, Release 0.5.3

Async pythonic interface to BioMart.

• Free software: MIT license

• Documentation: https://apybiomart.readthedocs.io

• GitHub repo: https://github.com/robertopreste/apybiomart

CONTENTS: 1

https://pypi.python.org/pypi/apybiomart
https://www.repostatus.org/#wip
https://travis-ci.com/robertopreste/apybiomart
https://circleci.com/gh/robertopreste/apybiomart
https://codecov.io/gh/robertopreste/apybiomart
https://apybiomart.readthedocs.io/en/latest/?badge=latest
https://pyup.io/repos/github/robertopreste/apybiomart/
https://pyup.io/repos/github/robertopreste/apybiomart/
https://pepy.tech/project/apybiomart
https://apybiomart.readthedocs.io
https://github.com/robertopreste/apybiomart

apybiomart Documentation, Release 0.5.3

2 CONTENTS:

CHAPTER

ONE

FEATURES

apybiomart is a Python module which provides a simple asynchronous interface to Ensembl BioMart. Users can
exploit the async interface to schedule multiple queries using all the commodities offered by Python’s asyncio library.

Depending on specific needs, apybiomart offers different entry points:

• an asynchronous aquery() function, to schedule multiple queries in the same event loop;

• a synchronous query() function, which can be used for exploratory queries, executed in real time;

• a set of synchronous find_*() functions, which can be used to retrieve the list of available marts
(find_marts()), datasets for a specific mart (find_datasets()), attributes (find_attributes())
and filters (find_filters()) for a specific dataset.

– a set of related CLI commands also exists to allow exploration of these data from the command line; these
are, respectively, apybiomart marts, apybiomart datasets, apybiomart attributes
and apybiomart filters. Run apybiomart --help for further details.

Please refer to the Usage section of the documentation for further information.

1.1 Background

apybiomart was originally born as a fork of the great pybiomart package.

I was working on a project that employed a series of async calls to several online resources, but I couldn’t manage to
perform asynchronous calls to BioMart using that package, so I decided to modify it to better suit my needs. However,
it gradually evolved into a very different thing: the original implementation was rewritten and the structure of the
package changed a bit, in a way that I found most useful for my purpose.

This said, all the credits go to jrderuiter, which created the original pybiomart package.

3

https://www.ensembl.org/biomart/martview
https://apybiomart.readthedocs.io/en/latest/usage.html
https://github.com/jrderuiter/pybiomart
https://github.com/jrderuiter
https://github.com/jrderuiter/pybiomart

apybiomart Documentation, Release 0.5.3

4 Chapter 1. Features

CHAPTER

TWO

INSTALLATION

apybiomart only supports Python 3, and can be installed using pip:

pip install apybiomart

Please refer to the Installation section of the documentation for further information.

5

https://apybiomart.readthedocs.io/en/latest/installation.html

apybiomart Documentation, Release 0.5.3

6 Chapter 2. Installation

CHAPTER

THREE

CREDITS

This package was created with Cookiecutter and the cc-pypackage project template.

7

https://github.com/audreyr/cookiecutter
https://github.com/robertopreste/cc-pypackage

apybiomart Documentation, Release 0.5.3

8 Chapter 3. Credits

CHAPTER

FOUR

TABLE OF CONTENTS

4.1 apybiomart

Async pythonic interface to BioMart.

• Free software: MIT license

• Documentation: https://apybiomart.readthedocs.io

• GitHub repo: https://github.com/robertopreste/apybiomart

4.1.1 Features

apybiomart is a Python module which provides a simple asynchronous interface to Ensembl BioMart. Users can
exploit the async interface to schedule multiple queries using all the commodities offered by Python’s asyncio library.

Depending on specific needs, apybiomart offers different entry points:

• an asynchronous aquery() function, to schedule multiple queries in the same event loop;

• a synchronous query() function, which can be used for exploratory queries, executed in real time;

• a set of synchronous find_*() functions, which can be used to retrieve the list of available marts
(find_marts()), datasets for a specific mart (find_datasets()), attributes (find_attributes())
and filters (find_filters()) for a specific dataset.

– a set of related CLI commands also exists to allow exploration of these data from the command line; these
are, respectively, apybiomart marts, apybiomart datasets, apybiomart attributes
and apybiomart filters. Run apybiomart --help for further details.

Please refer to the Usage section of the documentation for further information.

9

https://pypi.python.org/pypi/apybiomart
https://www.repostatus.org/#wip
https://travis-ci.com/robertopreste/apybiomart
https://circleci.com/gh/robertopreste/apybiomart
https://codecov.io/gh/robertopreste/apybiomart
https://apybiomart.readthedocs.io/en/latest/?badge=latest
https://pyup.io/repos/github/robertopreste/apybiomart/
https://pyup.io/repos/github/robertopreste/apybiomart/
https://pepy.tech/project/apybiomart
https://apybiomart.readthedocs.io
https://github.com/robertopreste/apybiomart
https://www.ensembl.org/biomart/martview
https://apybiomart.readthedocs.io/en/latest/usage.html

apybiomart Documentation, Release 0.5.3

Background

apybiomart was originally born as a fork of the great pybiomart package.

I was working on a project that employed a series of async calls to several online resources, but I couldn’t manage to
perform asynchronous calls to BioMart using that package, so I decided to modify it to better suit my needs. However,
it gradually evolved into a very different thing: the original implementation was rewritten and the structure of the
package changed a bit, in a way that I found most useful for my purpose.

This said, all the credits go to jrderuiter, which created the original pybiomart package.

4.1.2 Installation

apybiomart only supports Python 3, and can be installed using pip:

pip install apybiomart

Please refer to the Installation section of the documentation for further information.

4.1.3 Credits

This package was created with Cookiecutter and the cc-pypackage project template.

4.2 Installation

PLEASE NOTE: apybiomart only supports Python 3!

4.2.1 Stable release

To install apybiomart, run this command in your terminal:

$ pip install apybiomart

This is the preferred method to install apybiomart, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

4.2.2 From sources

The sources for apybiomart can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/robertopreste/apybiomart

Or download the tarball:

$ curl -OL https://github.com/robertopreste/apybiomart/tarball/master

Once you have a copy of the source, you can install it with:

10 Chapter 4. Table Of Contents

https://github.com/jrderuiter/pybiomart
https://github.com/jrderuiter
https://github.com/jrderuiter/pybiomart
https://apybiomart.readthedocs.io/en/latest/installation.html
https://github.com/audreyr/cookiecutter
https://github.com/robertopreste/cc-pypackage
https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/robertopreste/apybiomart
https://github.com/robertopreste/apybiomart/tarball/master

apybiomart Documentation, Release 0.5.3

$ python setup.py install

4.3 Usage

apybiomart can be used in a project with a simple import:

import apybiomart

The main purpose of the package is to perform queries on BioMart (either synchronously or asynchronously), however
users may first need to explore the available marts, datasets, attributes and filters.

In addition to interactively inspect these results, users can also save them to a CSV file, using the --save flag
on the CLI and the save=True argument in Python, and optionally specify a filename using the --output
<filename.csv> option on the CLI and the output="filename.csv" argument in Python.

4.3.1 Marts, datasets, attributes and filters

BioMart contains different databases, called marts, each of which in turn contains several datasets, each related to a
specific species. These datasets can be queried and it is possible to restrict the amount of data returned to one or more
particular types of information, namely attributes, and using filters that only retain data satisfying one or more specific
criteria.

For more information, please refer to BioMart’s help page.

Marts

In order to view the marts available on BioMart, the find_marts() function can be used:

from apybiomart import find_marts
find_marts()

A dataframe with the available marts is returned, with their proper name and display_name:

Mart_ID Mart_name
0 ENSEMBL_MART_ENSEMBL Ensembl Genes 96
1 ENSEMBL_MART_MOUSE Mouse strains 96
2 ENSEMBL_MART_SEQUENCE Sequence
3 ENSEMBL_MART_ONTOLOGY Ontology
4 ENSEMBL_MART_GENOMIC Genomic features 96
5 ENSEMBL_MART_SNP Ensembl Variation 96
6 ENSEMBL_MART_FUNCGEN Ensembl Regulation 96

A CLI command is also available to retrieve the same information: apybiomart marts.

4.3. Usage 11

https://www.ensembl.org/info/data/biomart/index.html

apybiomart Documentation, Release 0.5.3

Datasets

Available datasets for a specific mart can be retrieved using the find_datasets() function:

from apybiomart import find_datasets
find_datasets(mart="ENSEMBL_MART_ENSEMBL")
same as above, using the default mart
find_datasets()

The find_datasets() function accepts an optional mart argument, which defaults to “EN-
SEMBL_MART_ENSEMBL”. The returned dataframe contains all the available datasets in the given mart,
with their name, display_name and the mart to which they belong:

Dataset_ID Dataset_name
→˓ Mart_ID
0 rroxellana_gene_ensembl Golden snub-nosed monkey genes (Rrox_v1)
→˓ENSEMBL_MART_ENSEMBL
1 ggallus_gene_ensembl Chicken genes (GRCg6a)
→˓ENSEMBL_MART_ENSEMBL
2 dmelanogaster_gene_ensembl Drosophila melanogaster genes (BDGP6.22)
→˓ENSEMBL_MART_ENSEMBL
..
→˓ ...
181 sdorsalis_gene_ensembl Yellowtail amberjack genes (Sedor1)
→˓ENSEMBL_MART_ENSEMBL
182 ohni_gene_ensembl Japanese medaka HNI genes (ASM223471v1)
→˓ENSEMBL_MART_ENSEMBL
183 pmarinus_gene_ensembl Lamprey genes (Pmarinus_7.0)
→˓ENSEMBL_MART_ENSEMBL

A CLI command is also available to retrieve the same information: apybiomart datasets, whose --mart
option can be used to specify which mart will be used (default is “ENSEMBL_MART_ENSEMBL”).

Attributes

When querying a dataset, users may want to retrieve specific attributes; the find_attributes() function accepts
an optional dataset (defaulting to “hsapiens_gene_ensembl”) and gathers all the available attributes for the given
dataset:

from apybiomart import find_attributes
find_attributes(dataset="hsapiens_gene_ensembl")
same as above, using the default dataset
find_attributes()

The dataframe returned contains each attribute’s name, display_name, description (where available), and the
dataset to which it belongs:

Attribute_ID Attribute_name Attribute_description
→˓ Dataset_ID
0 ensembl_gene_id Gene stable ID Stable ID of the Gene
→˓hsapiens_gene_ensembl
1 ensembl_gene_id_version Gene stable ID version Versionned stable ID of the Gene
→˓hsapiens_gene_ensembl
2 ensembl_transcript_id Transcript stable ID Stable ID of the Transcript
→˓hsapiens_gene_ensembl
..
→˓ ...

(continues on next page)

12 Chapter 4. Table Of Contents

apybiomart Documentation, Release 0.5.3

(continued from previous page)

3348 cds_length CDS Length
→˓hsapiens_gene_ensembl
3349 cds_start CDS start
→˓hsapiens_gene_ensembl
3350 cds_end CDS end
→˓hsapiens_gene_ensembl

A CLI command is also available to retrieve the same information: apybiomart attributes, whose
--dataset option can be used to specify which dataset will be used (default is “hsapiens_gene_ensembl”).

Filters

Datasets can be queried using filters that restrict the returned information to some specific subset of interest (e.g. chro-
mosome, start position, etc.). In order to retrieve the list of filters available for a given dataset, the find_filters()
function can be used:

from apybiomart import find_filters
find_filters("hsapiens_gene_ensembl")
same as above, using the default dataset
find_filters()

This function accepts an optional dataset argument, which defaults to “hsapiens_gene_ensembl”, and returns a
dataframe with the name, type, description (where available) of each filter, as well as the dataset to which
it belongs:

Filter_ID Filter_type Filter_description
→˓Dataset_ID
0 link_so_mini_closure list hsapiens_gene_
→˓ensembl
1 link_go_closure text hsapiens_gene_
→˓ensembl
2 link_ensembl_transcript_stable_id text hsapiens_gene_
→˓ensembl
..
→˓ ...
39 germ_line_variation_source list hsapiens_gene_
→˓ensembl
40 somatic_variation_source list hsapiens_gene_
→˓ensembl
42 so_consequence_name list hsapiens_gene_
→˓ensembl

A CLI command is also available to retrieve the same information: apybiomart filters, whose --dataset
option can be used to specify which dataset will be used (default is “hsapiens_gene_ensembl”).

4.3. Usage 13

apybiomart Documentation, Release 0.5.3

4.3.2 Queries

Once the desired mart, dataset, attributes and filters have been explored (or if they were known beforehand), it is
possible to query BioMart to retrieve the actual data; queries can be performed synchronously or asynchronously.

Exploring the difference between these two approaches is out of the scope of this document, but basically while in
synchronous calls the client has to wait for a request to be complete before moving to the next one, in asynchronous
calls the client can perform another request while the first one is idle, and so on until all the requests have been
performed and a response was returned.

Simply put, apybiomart allows to perform synchronous queries to explore the data, and asynchronous queries to group
multiple queries and run them efficiently.

Synchronous Queries

Synchronous queries can be performed using the query() function, which accepts attributes and filters
arguments, and an optional dataset argument (which defaults to “hsapiens_gene_ensembl”):

from apybiomart import query
query(attributes=["ensembl_gene_id", "external_gene_name"],

filters={"chromosome_name": "1"},
dataset="hsapiens_gene_ensembl")

The attributes are provided as a list of properties, while filters are represented by a filter name : filter value
dictionary. The returned dataframe contains the result of the query, restricted according to the provided filters and
attributes.

Asynchronous Queries

Asynchronous queries can be performed using the aquery() function, which works just like query(), with the
only difference that this is an async coroutine, so it needs to be handled properly taking advantage of the asyncio
event loop:

import asyncio
from apybiomart import aquery
loop = asyncio.get_event_loop()
loop.run_until_complete(

aquery(attributes=["ensembl_gene_id", "external_gene_name"],
filters={"chromosome_name": "1"},
dataset="hsapiens_gene_ensembl")

)

This allows to group multiple queries together, and the event loop will take care of scheduling them for execution:

import asyncio
from apybiomart import aquery
loop = asyncio.get_event_loop()
tasks = [aquery(attributes=["ensembl_gene_id", "external_gene_name"],

filters={"chromosome_name": str(i)},
dataset="hsapiens_gene_ensembl") for i in range(3)]

loop.run_until_complete(asyncio.gather(*tasks))

It is of course possible to assign the query results to one or more specific variables, for future usage:

14 Chapter 4. Table Of Contents

apybiomart Documentation, Release 0.5.3

replacing last line of the previous code snippet
single_result = loop.run_until_complete(asyncio.gather(*tasks))
or using multiple variables
chrom1, chrom2, chrom3 = loop.run_until_complete(asyncio.gather(*tasks))

Please refer to the asyncio documentation for more information.

4.4 API

4.4.1 Python Module

Entry points

These functions are available after you import apybiomart and should be used as the main entry points for
apybiomart. If you want more control, you can use the internal classes described below.

async apybiomart.apybiomart.aquery(attributes: List[str], filters: Dict[str, Union[str, int, list, tu-
ple, bool]], dataset: str = 'hsapiens_gene_ensembl', save:
bool = False, output: str = 'apybiomart_aquery.csv') →
pandas.core.frame.DataFrame

Launch asynchronous query using the given attributes, filters and dataset.

Parameters

• attributes – list of attributes to include

• filters – dict of filter name : value to filter results

• dataset – BioMart dataset name (default: “hsapiens_gene_ensembl”)

• save – save results to a CSV file [default: False]

• output – output filename if saving results [default: ‘apybiomart_aquery.csv’]

apybiomart.apybiomart.find_attributes(dataset: str = 'hsapiens_gene_ensembl', save: bool =
False, output: str = 'apybiomart_attributes.csv') →
pandas.core.frame.DataFrame

Retrieve and list available attributes for a given mart.

Parameters

• dataset – BioMart dataset name (default: “hsapiens_gene_ensembl”)

• save – save results to a CSV file [default: False]

• output – output filename if saving results [default: ‘apybiomart_attributes.csv’]

apybiomart.apybiomart.find_datasets(mart: str = 'ENSEMBL_MART_ENSEMBL', save: bool
= False, output: str = 'apybiomart_datasets.csv')→ pan-
das.core.frame.DataFrame

Retrieve and list available datasets for a given mart.

Parameters

• mart – BioMart mart name (default: “ENSEMBL_MART_ENSEMBL”)

• save – save results to a CSV file [default: False]

• output – output filename if saving results [default: ‘apybiomart_datasets.csv’]

4.4. API 15

https://docs.python.org/3/library/asyncio.html

apybiomart Documentation, Release 0.5.3

apybiomart.apybiomart.find_filters(dataset: str = 'hsapiens_gene_ensembl', save: bool =
False, output: str = 'apybiomart_filters.csv') → pan-
das.core.frame.DataFrame

Retrieve and list available filters for a given mart.

Parameters

• dataset – BioMart dataset name (default: “hsapiens_gene_ensembl”)

• save – save results to a CSV file [default: False]

• output – output filename if saving results [default: ‘apybiomart_filters.csv’]

apybiomart.apybiomart.find_marts(save: bool = False, output: str = 'apybiomart_marts.csv')→
pandas.core.frame.DataFrame

Retrieve and list available marts.

Parameters

• save – save results to a CSV file [default: False]

• output – output filename if saving results [default: ‘apybiomart_marts.csv’]

apybiomart.apybiomart.query(attributes: List[str], filters: Dict[str, Union[str, int, list, tuple, bool]],
dataset: str = 'hsapiens_gene_ensembl', save: bool = False, output:
str = 'apybiomart_query.csv')→ pandas.core.frame.DataFrame

Launch synchronous query using the given attributes, filters and dataset.

Parameters

• attributes – list of attributes to include

• filters – dict of filter name : value to filter results

• dataset – BioMart dataset name (default: “hsapiens_gene_ensembl”)

• save – save results to a CSV file [default: False]

• output – output filename if saving results [default: ‘apybiomart_query.csv’]

Internal classes

These are the internal classes used by apybiomart, and can be imported with from apybiomart.classes
import <ClassName>. Use them if you want more control over the application.

class apybiomart.classes.AttributesServer(dataset: str, save: bool = False, output: str =
'apybiomart_attributes.csv')

Class used to retrieve and list available attributes for a dataset.

dataset
BioMart dataset name

find_attributes()→ pandas.core.frame.DataFrame
Return the list of available attributes for a specific dataset as a dataframe.

class apybiomart.classes.DatasetServer(mart: str, save: bool = False, output: str = 'apy-
biomart_datasets.csv')

Class used to retrieve and list available datasets for a mart.

mart
BioMart mart name

find_datasets()→ pandas.core.frame.DataFrame
Return the list of available datasets for a specific mart as a dataframe.

16 Chapter 4. Table Of Contents

apybiomart Documentation, Release 0.5.3

class apybiomart.classes.FiltersServer(dataset: str, save: bool = False, output: str = 'apy-
biomart_filters.csv')

Class used to retrieve and list available filters for a dataset.

dataset
BioMart dataset name

find_filters()→ pandas.core.frame.DataFrame
Return the list of available filters for a specific dataset as a dataframe.

class apybiomart.classes.MartServer(save: bool = False, output: str = 'apy-
biomart_marts.csv')

Class used to retrieve and list available marts.

find_marts()→ pandas.core.frame.DataFrame
Return the list of available marts as a dataframe.

Returns pd.DataFrame

class apybiomart.classes.Query(attributes: List[str], filters: Dict[str, Union[str, int, list, tuple,
bool]], dataset: str, save: bool = False, output: str = 'apy-
biomart_query.csv')

Class used to perform either synchronous or asynchronous queries on BioMart.

attributes
list of attributes to include

filters
dict of filter name : value to filter results

dataset
BioMart dataset name

async aquery()→ pandas.core.frame.DataFrame
Perform asynchronous query.

Return the result of the query based on the given attributes, filters and optional dataset using
Server.get_async(), as a pandas DataFrame.

query()→ pandas.core.frame.DataFrame
Perform synchronous query.

Return the result of the query based on the given attributes, filters and optional dataset using
Server.get_sync(), as a pandas DataFrame.

4.4.2 Command Line Interface

4.5 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

4.5. Contributing 17

apybiomart Documentation, Release 0.5.3

4.5.1 Types of Contributions

Report Bugs

Report bugs at https://github.com/robertopreste/apybiomart/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

Write Documentation

apybiomart could always use more documentation, whether as part of the official apybiomart docs, in docstrings, or
even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/robertopreste/apybiomart/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

4.5.2 Get Started!

Ready to contribute? Here’s how to set up apybiomart for local development.

1. Fork the apybiomart repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/apybiomart.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

18 Chapter 4. Table Of Contents

https://github.com/robertopreste/apybiomart/issues
https://github.com/robertopreste/apybiomart/issues

apybiomart Documentation, Release 0.5.3

$ mkvirtualenv apybiomart
$ cd apybiomart/
$ python setup.py develop

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 apybiomart tests
$ python setup.py test # or pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

4.5.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.5 and 3.6, and for PyPy. Check https://travis-ci.org/robertopreste/
apybiomart/pull_requests and make sure that the tests pass for all supported Python versions.

4.5.4 Tips

To run a subset of tests:

$ pytest tests.test_apybiomart

4.5.5 Deploying

A reminder for the maintainers on how to deploy. Make sure all your changes are committed (including an entry in
HISTORY.rst). Then run:

$ bump2version patch # possible: major / minor / patch
$ git push
$ git push --tags

WIP: Travis will then deploy to PyPI if tests pass.

4.5. Contributing 19

https://travis-ci.org/robertopreste/apybiomart/pull_requests
https://travis-ci.org/robertopreste/apybiomart/pull_requests

apybiomart Documentation, Release 0.5.3

4.6 Credits

4.6.1 Development Lead

• Roberto Preste <robertopreste@gmail.com>

4.6.2 Contributors

None yet. Why not be the first?

4.7 History

4.7.1 0.1.0 (2019-03-26)

• First development release.

0.1.1 (2019-03-27)

• Requests are converted to async calls;

• Code style is clean and Python 3 compatible.

0.1.2 (2019-03-27)

• Add basic tests.

4.7.2 0.2.0 (2019-03-31)

• New version with different organisation of classes and functions;

• Sync query and async aquery functions to query Biomart;

• Sync list_* functions to retrieve available marts, datasets, filters and attributes.

0.2.1 (2019-04-01)

• Add tests.

0.2.2 (2019-04-01)

• Basic functions working and tested;

• Fix documentation;

• Update requirements.

20 Chapter 4. Table Of Contents

mailto:robertopreste@gmail.com

apybiomart Documentation, Release 0.5.3

0.2.3 (2019-04-02)

• Update requirements;

• Fix type hints for query functions;

• Reorganise query classes into a single class;

• Update documentation.

0.2.4 (2019-04-04)

• Fix type hints;

• Fix docstrings in classes;

• Add docstrings to main entry points.

0.2.5 (2019-04-09)

• Fix test files with new BioMart versions;

• Add script to create test files automatically.

0.2.6 (2019-04-29)

• Update test files;

• Fix and update documentation.

4.7.3 0.3.0 (2019-05-05)

• Change list_* functions names to find_* for better compliance;

• Update documentation.

0.3.1 (2019-05-11)

• Fix requirements handling;

• Add function to check internet connection.

0.3.2 (2019-05-29)

• Correct minor typos;

• Update documentation and testfiles.

4.7. History 21

apybiomart Documentation, Release 0.5.3

0.3.3 (2019-07-29)

• Fix #37 - issue with the requests module not installed.

0.3.4 (2019-08-23)

• Better handling of filters arguments for query() and aquery() functions;

• Convert docstrings to Google style;

• Fix documentation.

0.3.5 (2019-08-25)

• Relax requirement versions.

4.7.4 0.4.0 (2020-01-26)

• Add CLI commands for finding marts, datasets, attributes and filters;

• Change output dataframe column names.

4.7.5 0.5.0 (2020-03-22)

• Add CLI and Python module options to save outputs to CSV file.

0.5.1 (2020-04-04)

• Add option to specify the output CSV filename.

0.5.2 (2020-06-06)

• Update tests and test files;

• Clean code;

• Add CI module.

0.5.3 (2020-11-30)

• Remove deprecated pd.np occurrencies;

• Update test files.

22 Chapter 4. Table Of Contents

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

23

apybiomart Documentation, Release 0.5.3

24 Chapter 5. Indices and tables

PYTHON MODULE INDEX

a
apybiomart.apybiomart, 15
apybiomart.classes, 16

25

apybiomart Documentation, Release 0.5.3

26 Python Module Index

INDEX

A
apybiomart.apybiomart

module, 15
apybiomart.classes

module, 16
aquery() (apybiomart.classes.Query method), 17
aquery() (in module apybiomart.apybiomart), 15
attributes (apybiomart.classes.Query attribute), 17
AttributesServer (class in apybiomart.classes), 16

D
dataset (apybiomart.classes.AttributesServer at-

tribute), 16
dataset (apybiomart.classes.FiltersServer attribute),

17
dataset (apybiomart.classes.Query attribute), 17
DatasetServer (class in apybiomart.classes), 16

F
filters (apybiomart.classes.Query attribute), 17
FiltersServer (class in apybiomart.classes), 16
find_attributes() (apy-

biomart.classes.AttributesServer method),
16

find_attributes() (in module apy-
biomart.apybiomart), 15

find_datasets() (apy-
biomart.classes.DatasetServer method),
16

find_datasets() (in module apy-
biomart.apybiomart), 15

find_filters() (apybiomart.classes.FiltersServer
method), 17

find_filters() (in module apy-
biomart.apybiomart), 15

find_marts() (apybiomart.classes.MartServer
method), 17

find_marts() (in module apybiomart.apybiomart),
16

M
mart (apybiomart.classes.DatasetServer attribute), 16

MartServer (class in apybiomart.classes), 17
module

apybiomart.apybiomart, 15
apybiomart.classes, 16

Q
Query (class in apybiomart.classes), 17
query() (apybiomart.classes.Query method), 17
query() (in module apybiomart.apybiomart), 16

27

	Features
	Background

	Installation
	Credits
	Table Of Contents
	apybiomart
	Installation
	Usage
	API
	Contributing
	Credits
	History

	Indices and tables
	Python Module Index
	Index

